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. DERIVATION OF THE VARIABLE COEFFICIENT KORTEWEG-de VRIES
: EQUATION USING MULTITIMING TECHNIQUES

Ry AGTENY, A

1. Introduction s

In the theory of shallow water waves the Korteweg-de Vries (KdV) equation

e

3 1
Mt TIMt N =0

plays a fundamental role. This equation was first derived by Korteweg and de Vries (1895) and
describes the motion due to small amplitude waves in shallow water of uniform undisturbed
depth. By shallow water we mean that the depth of the water is small compared to some
characteristic length of the waves. The nondimensional parameter L is the Ursell number and
is defined by

ﬁ 3=

P )
A A

n

K’

where a is the maximum amplitude of the wave, A is a characteristic length scale of the wave 3
and A, is the undisturbed depth of the water. The importance of the KdV equation is that it i
can describe slightly dispersive linear wavetrains (£ << 1), nonlinear long waves (£ >> 1) or -
cnoidal and solitary waves £ = O(1). Although the KdV equation cannot describe all the .,
phenomena associated with shallow water waves, it nevertheless is an extremely useful tool in
the study of such waves. ;

: It is frequently of interest to determine the behavior of these waves as they move into
regions of shallower and shallower water. The first study of this prollem is due 10 Green (see 5
Lamb (1932), Sect. 185). Green shows that when infinitely long lincar waves travel over a gra- ’
-‘ dually varying bottom the amplitude varies as h~"* where A = h(x) is the undisturbed depth
i of the water. This amplification (or attenuation) law is often referred to as Green’s law. Other
! authors (see, e.g., Grimshaw (1970) and Johnson (1973)) have studied the behavior of solitary
waves as they propagate into water of decreasing depth. There it was shown that the wave
i amplifies like #~'. Svendsen and Hansen (1978) have studied the behavior of cnoidal waves as
: they approach a beach and determined the Green's law appropriate for these waves. In each of
’ these cases the wave was regarded as a slowly varying solitary, cnoidal or linear wave. In all of
these studies but one, viz. Johnson (1973),* no attempt was made to derive an equivalent KdV
equation for problems involving gradual depth changes. Johnson showed that the correct equa-

tion governing the surface elevation 7 is

3
3 .72 2 " S dn 1 _
N+ 2¢h m tn s "t s ox h" 0

where x is the nondimensional distance measured parallel to direction of propagation, 7 is a
wave coordinate

{ i

¥ ¢ Manuscript submitted March 10, 1980.
: *The above equation for n has also be given without proof by Ostrovskiy and Pelinovskiy (1970).
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where 1 is the nondimensional time and h = h(8x) is the undisturbed water depth scaled with £
some typical depth h,. Here €, u?, & are small parameters defined later which measure the 14
wave amplitude, the shallowness of the water and the gradualness of the bottom variation. It is 5
clear that this equation is just the flat bottom KdV equation with slowly varying coefficients. 3
Because of the importance of this equation o the study of waves in water of varying depth it is i
the intent of this paper to give a second derivation of this equation using the standard tech- é
niques of singular perturbation theory. The derivation of Johnson does not state the limits on e
the validity of the above equation nor is it clear for whal relative values of the small parameters

€, u?, 8 the above equation holds.* Furthermore, the derivation presented by Johnson appears .
1o preclude the possibility of reflected waves at the second order; see, for example, his expan-
sion of 7). Both higher order reflected and transmitted waves are known (0 exisl. The reflected
waves have been discussed by Peregrine (1967) and Madsen and Mei (1969). In the case of i
long linear waves Witling (private communication) has shown that reflected and transmitted
waves are necessary for the satisfaction of certain conservation laws.

ward application of the method of multiple scales or multitiming. This technique has been dis-
cussed by many authors;, excellent references are Cole (1968), Van Dyke (1975), Nayfeh
(1974) and Leibovich and Seebass (1974). The analysis is conceptually straight-forward and
because of the widespread use of the multitiming technique it is felt that the derivation g
presented here is more accessible to the reader. Furthermore, the limits on the theory come 5
! immediately out of the analysis. In addition, the assumptions made allow for the possibility of 3
reflected waves in the higher order terms.

In the following report the variable coefficient KdV equation is derived by a straightfor- t
!
{

2. Mathematical Formulation

We consider two dimensional motions of an inviscid fluid. The coordinate system is that
sketched in Figure 1. The distance along the undisturbed free surface is X and the distance
measured normal to it is . The acceleration of gravitly is in the negative y direction and the

bottom is given by y = —h,h X , where h(0) = | and the length scale L determines how fast

the undisturbed fluid depth is changing. Because the fluid is regarded as inviscid we may s
assume a velocity potential = ¢ (X, y, 1) exists. In terms of this velocity potential the equa- "
tion of motion and boundary conditions may be written: :

X

55 +<-i>,.—y = 0 for —h,h 1

<y<H&x D

L

h — - _ -
é; = ——f ®s h'[i ony= —h,,hl%]

b, =M +odm;ony=7n

. 1]+ 1 - - - =
* n=-;[¢;+3(¢§+¢§) ony=7.
= Here the frec surface is given by y = (X,1), where 1, of course, is the time. The first equation
¥ represents mass conservation at each point in the fluid, the second equation expresses the lact ’

*Such questions, while of general interest, are particularly important in the study of the singularity as h — 0.
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that the bottom, y = —h, A i], is impenetrable; here #'(§) = %:— The last two equations are
the boundary conditions at the free surface ¥y = 7. Here g is the acceleration of gravity. The
third is the kinematic condition at the free surface and the fourth is the Bernoulli equation
evaluated at the free surface. Implicit in the derivation of the latter is the assumption that the
pressure is constant at the surface; hence we are ignoring any surface tension and the effect of

any fluid above the water.

To complete our description of the fluid motion we need an initial or boundary condition
which, of course, produces the wave motion of the free surface. Fortunately, we do not need
an explicit condition in order to derive the variable coefficient KdV equation. It will be
sufficient to assume that this condition introduces an amplitude a and characteristic length or

wavelength A into the problem; for example, a typical initial condition might be 3 = g f at

1= 0. The initial or boundary condition will only enter the problem through a and A;* these
will be used for scaling purposes later.

We now nondimensionalize the equations of motion as follows
= \X
y=hy
A
N t
n=ehn
® ~ ex/gh, ¢

where x, y, 1, 1, ¢ are the new nondimensional variables and € = -f—. The above equations
0

x|

~|

become

pld, +é,=0 —hBx)<y<en

&, =—uBd,h'Bx) on y=—h(xs)

b, = le‘n, + f'bx"'x]

i | e on y=¢m, )
—n'¢,+7¢¢3+3;5¢3
h,
whereuET"-. E}‘I.

We shall now study waves whose amplitudes are small, i.e., ¢ << |. We shall also
assume that the water is shallow, that is, that the lengths of the waves are large compared to
the depth, i.e., u << 1. In addition, we will regard the bottom as slowly varying, that is, the
lengths of the waves are taken to be short compared to L, i.e., 8 << 1. In terms of the physi-
cal parameters this requires a << h, << A << L. At this stage we need not assume any par-
ticular ordering of €, u, and 8; in this we differ from Johnson (1973) who at least at the outset
takes € = O(u?) = O(8).

*It should be mentioned that we are also assuming that the initial or boundary condition is such that to jowest order
the wave(s) move 1o the right, i.e., in the posilive x direction

3
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Because we are taking €, u? and & small, a natural approach to this problem is to seek i
perturbation solutions i
n=mn(x r.€, 8, pu)=n, +un +8bn+en;+pu'n+ un; '

+ 8% + plen; + Semg + €’

and
d=dx, y 1.6, 8, u) =, +ulp, + 8+ €d;+ puld, + nbos
+ 8% + pnled; + Sedg + €% : A
+..., i
where the dots indicate terms of third order in €, 8 and u? and 0, = ,(x, 1) only and i

¢, =¢,(x, y, 1) only, i=0,1,2 3, .... Although we arc regarding €, & and u? as arbi- s
trarily small these expansions are seen to break down at large values of x and r. In particular, it

can be shown that 5, contains terms which are proportional to x; thus when x = O % the ’ k

43
u’n term is just as large as the n, term and we no longer have a valid asymptotic expansion. ',
Nonuniformities such as these are well known and techniques have been devised which can
render the above expansion valid for large values of x and 1. One of these techniques is called
the method of multiple scales or the multitiming technique; see Cole (1968), Van Dyke
(1974), Nayfeh (1974) or Leibovich and Seebass (1974). In fact, both Cole and Leibovich and
Seebass have used this technique to derive the flat bottom or constant coefficient version of the
KdV equation, suggesting that this is a natural way to derive the variable coefficient equation.
i The basic approach of the multitiming technique is to regard n = n(x, 7; €, 8, u?) as a func-

| tion of new independent variables

T = slg(xz) -1,

X, = X,

X = pix,

x; = 8x, (2)
and

X3 = €x,

ie., n=n(r, xo x;, X3, x5 4%, 8, €). Here r is the wave coordinate previously introduced.
This allows for the change in the wave speed due 0 the changing depth. in theorics where
there is no change in the propagation speed r would simply be 7 = x — 7 or g(x;) = x, = dx.
In the multitiming technique 7, x,, x;, x;, and x; are all regarded as independent variables.

When x,,-x-O&l ,7=0 (1) and x; = O (1) and when x, = x = Ollzl.x,- O(1) and
u

when x, = x = O (l . X3 = O(1). With this assumption we then go through the perturbation

procedure just as before. However, we require that our expansion be valid for x = O T e
"

1]. . . . . .
and ryk it turns out that this requirement gives the dependence of n, on x;, x3, x; and ulti- y

‘ mately the variable coefficient KdV equation.
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One motivation for this technique is found by examining the failure of the straight-
forward expansion. That expansion is seen to have the following form

n=mn,+pnllxconst. + f(x))+ ... t

where both 7, and f are bounded in x. This would seem to suggest that the exact solution for
7 can be writlen ﬁ
.

QA_

n=mnlx e, u?, 8) =qix, 1, u2x, pt, €, u?, 8).

Similar remarks apply for € and 8. Another more intuitive explanation is lhat we sec two ;
simultaneous changes in x. The first is due Lo the fact that the wave carries changes in the ‘

water height and in the fluid velocity. By definition of A these changes occur over a distance g
x = 0(1). In a coordinate system traveling with the wave these are seen as variations with

respect to 7. The second is that the basic wave shape is being slowly modified due to non- '3
linearity, dispersion and the bottom variation. Thus, it would seem reasonable to express 9 in i
the above manner. Of course, multitiming techniques are well established in mechanics and
applied mathemalics and these comments are not meant to be a complete justification of the 13
technique, rather they are meant 10 remind the reader of some of the intuitive ideas connected "
with this method. For a more completle discussion of multitiming technigues the reader is

referred to the above mentioned references.

"
3. Derivation of the Variable Coefficient KdV Equation i

In our derivation we first need to expand equations (1) in powers of €, 8 and u2. In the
following we may regard €, & and u? as independent and of any relative size. However, as in
any multitiming scheme involving more that one small parameter there will be difficulties with
this viewpoint, see, for example, Chapter IV of Leibovich and Seebass (1974). Because these
are mosl easily seen by an analysis of higher order terms not discussed below, we shall delay
the discussion of this until Section 4. It will be noted at this stage that these difficulties are (o
be expected in any multitiming approach and of course are implicit in Johnson’s (1973) work.

We shall first apply the basic assumption of multitiming, namely that the independent
variables are given by (2). We do this in a stepwise fashion; first we change variable from x

and 1 1o x and 7, where 7 Esl g®x) — rand x = x. The x and ¢ derivatives can then be

transformed using the chain rule

8|1 __9
arl ar

a|_28],,0
ax|, ax[“‘af .,
and
1 _a_z_ -26_2 . 82 _@2_ -;__Q_
3 o F e " Hoxar ax? T8 g

e

] where £(£) = P We further transform x and 7 1o the independent variables xq, x;, x3. X3

1 and 7 again by the chain rule
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and
:—; - g’a"—:, + 2g£; + a%z,,f
+ 3¢ :_f +2 Gxa:a'r + 2ax?;x2]
s 3:;267 * ax?;xol
+ 2l =& &

& axJBr + 6x3ax,,

+ 0t u®, ul, 52, 3¢, €2),

here, of course, g = g(x;) and in (1) we will take h = h(x5) = h(x;). Equations (1) there-

fore become

by = —F2[g2¢rr + zg¢x,,1 + d’x"x‘,] _“28 §o, + 2g¢xzf + 2¢x,,xz]

! ~ G bup + ber) — el + b ]

+ 00’ u's, ple, n282, nlbe, ple?l, (2a)
. and
‘ ' ¢, ~—ul8lgd. + 6,1 h'(x) + o) ony=—~h(xy) (2b)
and
d, = —u, +enllén, + n,,) (§é, +¢,) + olen?) ony = em, (2c)
and
—n = b, + 3 <@g, +,)?
+enld, (gd, +6,) +ebd, (&6, + ¢, )
‘ + €2¢x3(é¢7 +é,) + 0len?, 8%, ')
“ l + _l. e_z ¢}' ony - "’l- (2d)
2 u
: { At the next stage of the analysis we would need to expand ¢ in the two boundary conditions at
»y = €, eqns (2)c,d on y = en we may write

d=o(x, 1, y)=o(x 1, €n).

‘ Hence for small € this may be expanded in a Taylor series about y = 0:
| d=d(x 1,0 +end,(x 10 +...

6

13
; ;
k!
¥

s
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In like manner the derivatives &é,, ¢, . ., ., &, &, appearing in (2)c,d may also be
expanded
b.(en) = ¢,(0) +en e, (0) + ...,
b lem) = ¢, (0) + ey b, (0 + ...,
by () = ¢, (0) +en g, 0 +...,
by, (en) = $x,(0) + en ¢y,,2(0) +..., Q3)
é,,(en) = $x,(0) + e o, 0 +...,
and
¢,(em) =¢,0) +ene, 0 +...,

Ordinarily we would simply substitute these expansions in the boundary conditions (2)c, d.
However, to save space we shall anticipate a result which comes out of the analysis presented
later. This is that ¢,(r), x,, x;, ..., ¥) = O(u?) at most. We now use this result and substi-
tute expansions (3) in equations (2)c and (2)d; these boundary conditions then become

by = —en ¢, — uM, + eulgm, +n,) @d, + o, ) +olen?), ony =0, L)
and

N =—¢, ~end,, + %G(gtb, + ¢xo)2 + ¢F2¢x|(g¢f + ¢x,,)

+€d 8,89, +¢,) + %0, (0. + &)
1

+ 0(e%u?, eu?, 8%, €3) + 3 ﬁ ¢z

on y=0. (5)

Because we are anticipating the result ¢, = O(u?) we see that the main effect due to the expan-
sions (3) is the addition of a —en¢,, term to (2¢) and —end,, term to (2d) and the transfer of
the boundary condition from the moving surface y = en(x, 1) to the stationary surface y = 0,
at least to the order considered here. The surface elevation  and the potential ¢ are now
given by the equations (2a), (2b), (4) and (5).

Finally we need to expand
n=n(r, x,, x|, X3, x3;€, u?, 8),
and
&=, x,, xy, x5, X3, €, p2, 8)
in expansions of powers of ¢, u2 and 8, i.e.,
n=n,+puin + 80+ eny+utny + ulbns + 8 + ulen; + Seng + o + ... .
®=do +pulp) +86;+edy + by + uiBbs +8%, + pled; + Bedg + 2y + ... .

Here the dots refer to terms of third order in #2, 8 and e. When these expansions are substi-
tited in equations (2a), (2b), (4) and (5), and terms of like order in u2, 8, €, u', u%, ...
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are equated, we obtain a system of equations which need to be solved; these are listed in the
Appendix. We now proceed to solve these keeping in mind that we want to eliminate any secu-
lar, i.e., proportional to x,, terms which may occur in n, or ¢,.

From equations (A1) we see that ¢, = B,(r, x,, x|, x;, x3) only. We will also require
that the wave(s) move in the positive x direction only and will therefore assume that B, is
independent of x,, i.e.,

¢, = B,(r, x), x3, x3),
and
Mo = B,,.
We now consider equations (A2); these now read
by = -&*B,.,,
é,=0 on y=—h,
and
¢, =—B8B,,, on y=0.
The first equation implies
b1y~ —8" Boe ¥y + A1, X,, X1, X2 X3)
Substitution in the boundary condition at y = —h yields 4;:
Ay =-¢’h B,,,,
hence
¢, = —§° B,,.,(» + h) in general.
We also need to satisfy the boundary condition at y = 0, this then requires that

=
- h(x;)‘

Or upon integration

g(xy) = j:)xz h="* (p) dp,

where we have chosen the positive sign for g. This of course agrees with the result presented
earlier for 7. Thus, our results for ¢, and n, are

2
‘]; L + hy Bo" + B](Ty Xo» X1 X3 X3). (6)

¢ =- 3

and

m = B,.

We now consider equations (A3). Integration and application of the boundary conditions
at y = —~hand y = 0 show that ¢,, = 0 and therefore

¢z' Bz(‘r. Xas X1, X2 XJ),

and from the last equation in (A3)
n= BZ'r'

R ey T BB A
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We now consider equations (A4). As in equations (A3) we can easily show that i
¢3= 83(1', Xor» Xy X2u X})
and

1
m= B - 2n "73—

When we use the fact that ¢,, = 0 and our results for ¢, equations (A5) become

1 1 1|2 2
oy = _lz By, + W leur + le,,x“ + ﬁ % + M| Norer — W Nox -
b4y, =0 on y=—h
¢4y =—By,, on y=0.
If we integrate the first equation we find
¢4=_lB| +—2—B| +B| +B| y+L‘L3+h2ﬂ i
Yy h TT \/’E X,T x,T X, X, h2 6 2 oTTT

2
- -J‘,T noxly + A4(7, Xo» X1, X3, X3).
The boundary condition at y = —h determines A, as

h 1 2
Ay= _Zﬁ Nox; — ? Norer — hl; Blrr + W le" + le"x"]~
The boundary condition at y = 0 gives us the equation for B;:
A4 = —Blrr
or

2 h
ﬁ le‘,r + BI.\'”x“ = _Izﬁ nn.r| + 3 Norrr

We note that a particular solution for B, is
B, - —x Y [ K

or

Vh
m= Blr = _xn—z_— K,
where K, = K,(r, x|, x3, x3) = Nh N, + -g Norrr- Thus, m; grows linearly with x, and

5| our expansion scheme breaks down, i.e., uln; = 0(y,), unless K; = 0,
mn

when x, = x = 0[—'—

ie.,
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h
Nox, + l/é_.' Norrr ™ 0. ¢)

Thus, in order to avoid the breakdown of our expansion when x = O[-—%] we shall assume that
I

the x, behavior of n, is given by (7). We note that there is no assumption here on B, except,
of course, that B,, = n, be such that our expansion be valid for large values of x. A more
careful analysis of the homogeneous solution for B, shows that both right and left moving
waves are possible. Had we assumed B,, = 0 or 5, = 0 as does Johnson (1973), this would
not be the case.

We now consider equations (A6) which now read

I 2

-3
¢5yy = _[; 8271 + \/Z B2xar + BZx”x" 2

1
+ =
2h

h' 2
No — :77 Nox,
b5, = - on y=—h
Sy \/77‘ Mo
és, = =By, on y=0.
Integration of the first equation yields

1 2
o5y = _[—h- By, + :/_'h'_, B2xor + By x

2
- Jh Nox, V + AS(T. Xo» X1» X2 x3)
The first boundary condition yields 45

| 1 2
As= ) -ﬁ Mo — N/ Nox, -|7" By, + 771’- BZx"7 + BZx{,x(,l h.

The second boundary condition yields our equation for B;:
As= —8211
2 1 1 &
JF BZX"T + BZx"xo h lzﬁ Nox, + 2 \/'7 "o]'
A particular solution for B, is
vh
Bz" —X,,—'z" f K2 dr

or

vh
Ny = By = X K,

where K, = % 2Vh Nox, + % —-‘/h—z- n.{- Thus, when x, = x = Ol-!- , 81y = 0(n,) unless K,

]

= 0. Thus, in order to avoid a breakdown in our expansion when x = O

that K, =0, i.e.,

-;—I we shall require

l h'(xZ)
Tox, + 5 ———h(xz) 7, = 0. (8)

10
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If we consider equations (A7) we can easily show that é¢= Bg(r, x,, X, X2, x3) and
N6 ™= Ber.

When our results for ¢,, ¢, and ¢; are substituted in (A8) we have
| 2 2
b1y = -[7 By,, + 7;' B3X°f + BJx,x,] /4 Nox,
¢7y =0 on y= -h
3
b1y = T MNoNor — B3, on y=0.
Integration of the first yields
4’7'—133"*233 + B, }'"2") y
ly h T W X,? Xy %o 7,"' axy
+ A7(T. Xo» X1 X2, X;).
Substitution into the first boundary conditions shows that A, is given by
h

The second boundary condition yields our equation for Bj:

Ar= -[ ! B;.. + 72"" BJXof + BJx,x,I h - h Nex,

3
Ay=—By, + % MoMor

or
T-z By .+ B3, = -1k Nax, + 3 NoM
h Ix,7 Ix,x, h ox, h oMlor}-

A particular solution for B is

B; - —Xaizm’L }‘ K3 dr

or

Jh

2 K]p

By, = —x,

where K = %‘2\/7 Nax, + %n,n,,l. Thus, n; = B, — % -};n} grows linearly with x, and

when x, = x = O % our expansion breaks down, i.e., eny = 0(n,), unless K; = 0. Thus we

shall require that K; = 0, that is,

~jw

3 - =
Nox, + 2 h % momor = 0. )

If we continue on to equations (A9) and (A10) we see that
&g = Bg(r, x,, x;, X3, x3) only,

and
9= Bo(r, x,, x|, X3, X3) only.

1
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The functions ng and 0y are of course given by the last equations in (A9) and (A10).

This completes our analysis of the perturbation equations. In order that our expansion be

vaiduptox =0 Lz or O -:— or O -é- we see that we need to modify the behavior of 5, at
I

those large distances; this is the expected result of any muititiming scheme. The necessary
modification to n, are given by equations (7), (8), and (9) and are rewritten here for conveni-
ence

am, __JE &,
aX| 6 613
me 1 h'(x,)
ax; 4 hixp 1
and
an, - _l _% an,
8x3 2 Mo or ’

We can show that o, must satisfy the variable coefficient KdV equation by "reconstituting" the
above equations, that is, by writing

) 9 @ 9 )
Do) . 9o 4?2 +5 Mo +e Mo )
d9x ax, XXX 3 8x| XXX 3 8x2 Xy X 14X 3 ax3 XX X3

This, of course, just follows from the chain rule and has already been used to transform from
x, 7 coordinates to the 7, x,, x|, X, X3 coordinates. Thus,

o __,oh B W3-
ax F’ 6 norrr 4 h "Io 2 No Nors

(ST

or

N

Vh 5 n 3 .-
Mox + RIS Nores + T o+ € b P agn,, =0, (10)
where we would now regard & = A(6x). Once we allow for differences in notation we see that
Equation (10) is exactly equation (14) of Johnson (1973) or equation (1) of Ostrovsky and
Pelinovskiy (1970).

4. Discussion

We have derived the variable coefficient KdV equation (10) by standard multitiming pro-

cedures. This gives the correct behavior of 5, over distances and times of order 1 or —17 or
"

or
‘2

sl, whichever gives the largest distance. The behavior for larger distances, say x = O

O'-—-l—2 , would require an analysis of higher order terms and would show that we need to
€u

further correct n,. Thus, some care should be exercised when one of the parameters is very
much less than the other two. For example, if 8 << € or u?, say & = €2, then (10) is not

1 . We would then need to

expected to give an accurate description of the flow for x = O 5

include the corrections necessary at x = Ol—lz-l In this case (10) would reduce to
€
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1 3
Nox + Eé— Norsr + 7 € NoNor ™= 0,

and would only be valid for x = O —:— % . One obvious way to avoid this is to require that
M
€. & and u? are all much larger than any quadratic term involving 8, € and u2. This would then

ensure that the only corrections needed for x = O l, lz -;— are those contained in equation
€ u

(10). Other than this the relative sizes of €, u? and 8 are arbitrary.

Another point of interest is that the analysis presented here does not preclude the possi-
bility of reflected waves in 1y, n,, and n;. A careful analysis of these terms shows that both
right and left moving waves are possible in these solutions although the analysis presented here
is only expected to give us the behavior of 5, and not that of the higher order terms.

In conclusion, the analysis presented here is somewhat more general than that of Johnson
(1973). The derivation presented here is in terms of a standard technique of singular perturba-
tion theory, namely multitiming. The variable coefficient KdV equation (10) gives an accurate
description of the flow for distances of order of the largest of €', u=2 and 5~'. Except for the
difficulties mentioned earlier in this section there are no other restrictions of the size of €, pu?
and 8 relative to each other.

This work was performed at the Naval Research Laboratory while the author participated
in the ASEE Summer Faculty Research Program. Many useful discussions with James Witting
formed part of the basis of this work; his support is gratefully acknowledged.
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Appendix A
Equations Resulting from Perturbation Expansions I

The perturbation procedure outlined in Section 3 leads to the following system of egua-

tions; i
‘boyy =0 ﬁ
by =0 ony=—p (AD [

g
o =0
o l ony=20 d
No ™ ¢of

¢l_vy = _{g;2¢o" + 2g.¢ax‘,r + box )

o o

O B TG T

¢I_y’ 0 ony-—h (AZ)
!
. ¢|y = _7’01] ony=20
m= ¢l~r
¢2yy =0
% 3y =0 ony=—h (A3 ,
¢2y =0 l 0
ony =
4 7)2" ¢21 y
¢3y_v =0
2 3 =0 on y=—h  (Ad)
¢3y =0
ony =20

m= ¢31 - -;' (¢o'rg + ¢ox")2

bayy = —[é2¢lf: + 2é¢lx"r + ¢Ix"x" + 2g¢ax|r + 2¢ox"x|]

; ' dyy =0 on y=—h (AS)
¢4y--n|1| ony=20
Ne=d4

¢5y_\ - _[532¢2" + 2g.¢2x”r + ¢2x,,x,, + Ed,, + 2g.¢o,\37 + 2¢u\',,.r1] !
b3y = =80, + b, ] h'(x) ony=—h  (A6) f

- - Sl "
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¢sy""'ibl ony=0
s = s,
¢6vv =0
o =0 on y=~h
) (A7)
‘bv -0
Ne ™ ‘br ony= 0
‘7vv - _[‘.2‘)" + 2‘.‘31"r + ‘31“1‘" + 2g.¢nx’r + zénx]x"] '
‘Ty - on y=~—ph ;”
‘7v - "a‘lvv = N3 + (‘."ur + "n:”) (é¢nv + ¢nx.) (As) h
- Ny =—¢y — "o‘lyf + ¢ody, + ‘m,,¢lx,, + ‘;' Onx,,%f + % ¢Iv¢nx" ony=( '
. 1 |
+ ¢u|g¢ov + ‘m,‘nx,, + 7 ¢lzy
¢8yy =0
by, =0 on y=—h
s, = 0 (A9)
| ' ~ = =Py — "0¢2yf + é,d + ¢2x”¢nx‘, + -;' ¢2f¢oj" on y=0
1 .
+ 7 ¢2x"¢ov + ¢m,¢mg + ¢ox1 ox,,
¢9yr -0
by, =0 on y=—h
¢9| - 0
1
~Ne=— ¢y, + ¢.‘r¢m + ¢3.|"¢m" + 5¢,\1¢m,, on y= 0. (A10)

] .
+ 3 ¢or¢.\v\“ + ¢n.\‘ x¢m + ém ‘¢ux"

v In these equations we have anticipated and used the result that ¢, # ¢é,(y) and in equations
I (A9) and (A10) we have used the result that ¢, = ¢,, = 0.
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Fig. 1 — Notation and Coordinate System. The undisturbed depth is ¥ = —h,hl%l and a typical disturbance has

wavelength A and amplitude ¢, ¢ << h, << A\ << L.







